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We have conducted a detailed analysis of scaling for longitudinal and transverse
velocity structure functions in a turbulent free shear flow. The free shear flow is
generated via a mixing layer under varying conditions of upstream flow disturbances.
Two velocity components are simultaneously measured with a pair of cross-wires
at two spanwise locations, with varying positions of the second cross-wire, which
allows us to study the statistics of two longitudinal and four transverse velocity
increments. Spectra, probability density functions of the velocity increments, and
scaling exponents are measured and discussed in relation to flow structures such as
streamwise and spanwise vortices. Scaling exponents of the velocity structure functions
are interpreted in the phenomenological framework of the hierarchical structure (HS)
model of She & Leveque (Phys. Rev. Lett. vol. 72, 1994, p. 336). One HS parameter (β)
specifying similarity between weak and strong vortices is shown to be universal for all
structure functions, and another HS parameter (γ ) related to the singularity index of
the so-called most intermittent structures shows strong dependence on flow structures.
The strongest intermittency occurs in the form of streamwise vortices. The results
confirm that coherent small-scale flow structures are responsible for intermittency
effects and anomalous scaling, and a complete set of measurements of longitudinal
and transverse velocity variations are required to derive flow structural information.

1. Introduction
Statistical analysis of shear-flow turbulence has recently attracted much attention

(Gualtieri et al. 2002; Arimitsu & Arimitsu 2002; Fujisaka et al. 2002; Casciola
et al. 2003; Jacob et al. 2004). There are at least two important motivations. First,
turbulence in real flows is often generated by instabilities where shear is present. A
typical example is the wall-bounded flow in a channel or the flow over a flat plate,
where turbulence is produced near the wall with a strong shear and then migrates to
another spatial location. Another example is a free shear flow in a mixing layer where
a Kevin–Helmholtz-type instability generates spanwise vortices which subsequently
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break down to produce turbulence. The fluid mechanical study of these two types of
flow has yielded much quantitative knowledge about the mean flow and qualitative
knowledge about flow structures (Cantwell 1981; Robinson 1991). However, in the
fully developed turbulence regime, fluctuations are generated on a wide range of
scales via complex cascade dynamics. The lack of detailed characterization of the
properties of fluctuations makes it difficult to derive a self-consistent closure theory.
Shear-flow turbulence is the simplest real-world turbulent system to build a bridge
between the mean flow and fluctuation structures.

Secondly, the statistical physics has advanced considerably during the past two
decades, and has proved helpful in understanding the scaling and intermittency
property of homogeneous isotropic turbulence. When a cascade of energy takes place
to produce fluctuations at small scales, non-uniformity of the energy flux leads to
intermittency effects, strongly non-Gaussian statistics and anomalous scaling (She
1991; Sreenivasan & Antonia 1997). There is overwhelming evidence (Sreenivasan
1991) that velocity fluctuations in a turbulent flow display multifractal-type scaling
(Frisch 1995; Mandelbrot 1974), and a simple phenomenology called hierarchical
structure (HS) by She & Lévêque (1994) has proved to be capable of describing the
scaling accurately (She 1998). We will refer to the original proposal of She & Lévêque
(1994) as SL94, but will refer to its extension to more general situations where two
parameters can be determined in specific flows as the HS model. A noteworthy
feature of the HS model is that the parameters seem to have a physically sound
interpretation. One parameter (β) describes how similar the fluctuation structures
are with increasing intensities, and another parameter (γ ) is related to the (scaling)
property of the most intense fluctuation structures. The validity of the HS model
has been established by the measurements in experiments (Ruiz-Chavarria, Baudet &
Ciliberto 1994) and in numerical simulations (Cao, Chen & She 1996) of isotropic
turbulence. It is intriguing to extend the analysis to real flow systems where non-trivial
flow structures are present. Shear flow is a good point to start.

There have been many studies of shear-flow turbulent structures (see e.g. Adrian,
Meinhart & Tomkins 2000; Rogers & Moin 1987; Lee, Kim & Moin 1990; Kida &
Tanaka 1994). Earlier experimental studies on homogeneous shear flows by
Champagne, Harris & Corrsin (1970) and Tavoularis & Corrsin (1981) emphasized
the local isotropy of the small-scale fluctuations. This continues to inspire studies,
e.g. by Pumir & Shraiman (1995) and Pumir (1996). From a statistical physics point
of view, the local isotropy is a special self-organized quasi-equilibrium state of the
homogeneous flow. Persistent anisotropy is a sign of strong deviation from the quasi-
equilibrium state of homogeneous and isotropic turbulence. Discovering quantitative
global measures for a far-from-equilibrium state has been a continuing effort in non-
equilibrium statistical mechanics. Shear-flow turbulence is therefore a remarkable
system for non-equilibrium statistical physics studies.

Toschi, Lévêque & Ruiz-Chavarria (2001) proposed an integral structure function
(ISF) to account for the leading effects of shear intensity on the variation of scaling
on phenomenological grounds. Gualtieri et al. (2002) and Casciola et al. (2003)
established a new similarity law for shear-dominated turbulence in a boundary layer
and in a homogeneous shear flow. The new similarity law extends the Kolmogorov
refined similarity hypothesis (RSH) for homogeneous turbulent flows, and may be
considered to be a form of the self-organization specific to turbulent shear flows. In
addition, Gualtieri et al. (2002) reported the existence of a universal relative scaling
of the energy dissipation fluctuations in homogeneous shear turbulence, identical to
that in homogeneous isotropic turbulence. We believe that this is another form of the
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self-organization laws for turbulence. An intriguing question investigated here is the
nature of the universal relative scaling.

Whereas a homogeneous shear flow is translation-invariant in the vertical (shear)
direction, a free shear flow in a mixing layer develops growing spanwise vortices in
the downstream direction. The rate of shear is not constant in both the streamwise
and vertical directions. However, in the symmetric middle plane of a mixing layer, we
expect to observe a number of robust dynamical features of a homogeneous shear
flow, particularly regarding the streamwise and spanwise variations. The present study
is devoted to a detailed scaling analysis of velocity fluctuations in a free shear flow.

Specifically, we have conducted simultaneous measurements of two velocity
components at two different spanwise locations by a pair of cross-wire probes,
which allows examination of the velocity increments in both the streamwise (x)
and spanwise (z) directions. By rotating the cross-wire probes, we obtain all three
velocity components, which allows us to study two longitudinal velocity increments:
δxu(�) = u(x + �) − u(x) and δzw(�) = w(z + �) − w(z), and four transverse velocity
increments: δzu(�) = u(z + �) − u(z), δxv(�) = v(x + �) − v(x), δzv(�) = v(z + �) − v(z)
and δxw(�) = w(x + �) − w(x). This rich set of data characterizes the development
of fluctuation structures in terms of the statistics of velocity increments. Chen et al.
(1997) established a generalized RSH which relates the transverse velocity increments
to the vorticity fluctuation in isotropic turbulence. While the study of longitudinal
versus transverse velocity structure functions continues to be an intriguing issue,
our central theme here is to find statistical evidence of flow structures or to relate
statistical measures of scaling to fluid dynamical mechanisms.

In order to quantify the role of flow structures for the explanation of the anomalous
scaling of various velocity increments, we must select a phenomenological framework.
Biferale et al. (2002) developed an analysis of turbulent fluctuation structures in
a numerical channel flow in terms of SO(3) and SO(2) decomposition. Evidence
of streak-like and hairpin structures can be extracted from the analysis. However,
as Biferale et al. pointed out, we still need to understand the physics of anisotropic
structure. This understanding would involve the quantitative description of the scaling
exponents. The HS model is a particularly suitable framework in which to carry out
this study. In this framework, turbulence is considered to be a hierarchy of complex
flow patterns, rather than fluctuations randomly assembled. The basic assumption of
the HS model is that the sequence of fluctuations of increasing intensity satisfy a
generalized hierarchical similarity law rather than the Kolmogorov’s complete scale
similarity law. Hierarchical similarity seems to be a universal self-organizational
principle, and a parameter β gives quantitative characterization of the degree of
the self-organization. On the other hand, the so-called most intermittent structures
are characteristic of intense flow structures (as seen in the Couette–Taylor flow, She
et al. 2001) which are believed to be related to the non-universal aspects of turbulence.
The free shear-flow measurement in this work provides an example for an empirical
study of both the universal HS similarity and the non-universal properties of the most
intermittent structures (in streamwise and spanwise directions). To our knowledge, this
is the first attempt to establish a relationship between the values of the HS parameters
(β and γ ) and the properties of flow structures in a concrete flow system, which may
provide a foundation for further development of sound theoretical concepts.

The paper is organized as follows. In § 2, we give a self-contained description of
the HS phenomenology and its possible application into the real turbulent flows.
In particular, we present the method of the HS analysis, namely the β-test and the
γ -test, and explain the interpretations of the two fundamental parameters. Section 3
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introduces the experimental set-up and describes the flow conditions that give rise to
the data studied in this work. In § 4, we present results of our analysis on spectra,
probability density functions (PDFs), scaling and HS parameters. Finally, we offer a
summary and some additional discussion in § 5.

2. The HS description
Under the assumption of local isotropy, Kolmogorov (1941, hereinafter referred to

as K41) proposed that the velocity structure functions Sp(�) ≡ 〈|δv�|p〉 have simple
power-law dependence on � within the inertial subrange

Sp(�) ∼ εp/3�p/3. (2.1)

This power-law p/3 is an indication of a universal behaviour of small-scale
fluctuations. Later, both experimental measurements and computer simulations
(Frisch 1995) have established that the power-law scaling exists in the inertial range,
but the scaling exponents are different from p/3, namely,

Sp(�) ∼ �ζp , (2.2)

and ζp has a nonlinear dependence on p. The so-called anomalous scalings ζp are
also known as intermittent effects since the higher-intensity fluctuation events of δv�

are expected at small scales compared to the normal scaling situation.
Later a more general scaling relation called the extended self-similarity (ESS) (Benzi

et al. 1993) property of turbulence was introduced to describe the scaling behaviour
of the higher-order moments. Such a scaling property has the form:

Sp(�) = Sq(�)
ζp,q , (2.3)

where ζp,q are called relative scaling exponents. The ESS extends the scaling in
physical scales to a relative scaling between the velocity structure functions at two
different orders p and q . Benzi et al. (1996) reported the experimental evidence of
a generalized ESS property (GESS) satisfied by flows with a variety of physical
conditions where the ESS property is not well satisfied. GESS has the form:

G(p,q)(�) ∝ G(p′,q ′)(�)
ρ(p,q;p′,q ′), (2.4)

where G(p,q)(�) is the dimensionless structure function:

G(p,q)(�) = Sp(�)/Sq(�)
p/q . (2.5)

Usually we set q = q ′ = 3 when calculating G-function: Gp(�) = Sp(�)/S3(�)
p/3.

Both ESS and GESS indicate the possible existence of other self-similarity properties
in turbulence which persist even when the scale similarity does not hold. In some sense,
the new scaling relations reveal more fundamental scaling properties of turbulence
than the original inertial-range scaling of K41. The HS model was originally proposed
(She & Lévêque 1994) to understand the deviation of scaling from K41. In this work,
most HS analysis is carried out with respect to the ESS scaling.

The key point in the HS model is the introduction of a hierarchy of moment ratios,
namely

Fp(�) =
Sp+1(�)

Sp(�)
, (2.6)

each of which has the dimension of δv�. Hence, Fp(�) is the amplitude of the
fluctuations which may be characteristic of the turbulent field. It has been verified
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with both experimental and numerical data (Liu & She 2003; She & Liu 2003) that
Fp(�) increases monotonically with p and hence characterizes fluctuation structures
of increasing intensities. We refer to Fp(�) as the pth-order HS function.

An intuitive idea behind the HS model is that a self-organized dynamical state of
turbulence is characterized by a similar dependence of Fp(�) on � for different values
of p(0 � p � ∞). In terms of scaling law, the simplest similarity property is that all
Fp(�) have the same scaling. This gives rise to the K41 theory of turbulence for which
ζp has a linear dependence on p. It can be shown that a complete self-similarity
is ensured in this case and small- and large-amplitude fluctuations have exactly the
same dependence on �. This complete self-similarity law has been demonstrated to be
invalid in experiments and by numerical simulations, and the dissipation fluctuations
have anomalous scalings in � (Sreenivasan 1991).

The HS model postulated that the most intense structures F∞(�) = limp→∞ Fp(�)
play a special role in defining the dynamical state of turbulence, and all other
fluctuation structures of finite p obey a hierarchical similarity law, namely:

Fp+1(�)

F∞(�)
= Ap

(
Fp(�)

F∞(�)

)β

, (2.7)

where 0 � β � 1, Ap are independent of �. We may proceed to define a method of
analysis which does not involve the hypothetical quantity F∞(�), by considering the
ratio

Fp+1(�)

F2(�)
=

Ap

A1

(
Fp(�)

F1(�)

)β

. (2.8)

Both sides of (2.8) can be computed from any empirical PDFs (or histograms) of δv�

calculated from an experimental or numerical turbulent fluctuation field. The linearity
in the log–log plot of (2.8) can be a direct test of the validity of (2.7) and the slope
β can be measured. This will be referred to as the HS similarity test, or β-test (She
et al. 2001; Liu & She 2003; She & Liu 2003).

Furthermore, She (1998) has shown that (2.7) implies a general formula for relative
scaling exponents which is also known as extended self-similarity (ESS) scaling (Benzi
et al. 1993), given by

ζp = γp + (1 − 3γ )
1 − βp

1 − β3
, (2.9)

where ζ3 = 1 and the parameter γ is defined by F∞(l) ∼ lγ where F∞(l) represents the
amplitude of the most intermittent structure. Then, a simple algebraic manipulation
gives

ζp − χ(p; β) = γ (p − 3χ(p; β)), (2.10)

where χ(p; β) = (1 − βp)/(1 − β3). When we plot ζp − χ(p; β) vs. p − 3χ(p; β), the
slope obtained is the parameter γ . This process is referred to as the γ -test (She et al.
2001; Liu & She 2003; She & Liu 2003).

The HS model gives a concise description of the set of multi-scale and multi-intensity
properties. It seems to be generally applicable to many statistically stationary multi-
scale fluctuation fields generated from strong nonlinear interactions. Indeed, it has
been discovered that the HS similarity is satisfied in a variety of nonlinear systems
and other complex systems, such as the Rayleigh–Bénard convection (Ching & Kwok
2000; Ching et al. 2003), the Couette–Taylor flow (She et al. 2001), flows in a rapidly
rotating annulus (Baroud et al. 2003), the passive scalar fields (Lévêque et al. 1999), the
climate variations (She et al. 2002), the variation of nucleotide density along DNA
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sequences (Ouyang & She 2004), the diffusion-limited aggregates (Queiros-Conde
1997), and a fluctuating luminosity field of natural images (Turiel et al. 1998).

The meaning of the parameter β (She 1998; She et al. 2001) can be readily obtained
from (2.7), which describes how similar the two successive HS functions Fp+1 and Fp

are. When β approaches 1, high (p + 1) HS function is like low (p) HS function; in
other words, strong and weak fluctuation structures are alike. This can be realized at
either an extremely ordered state or a completely homogeneous disordered state. In the
former, the structures of various intensities are strongly correlated and hence behave
similarly at different length scales. This is observed in Belousov–Zhabotinsky reaction
systems and in numerically simulated complex Ginzberg–Landau equations (Guo
et al. 2003; Liu et al. 2003, 2004). The other situation corresponds to the hypothetical
field postulated by the K41 theory with complete self-similarity; unfortunately, it has
not yet been observed in real physical systems. Another extreme case is the limit β → 0.
This is the case in which F∞(�) stands out as the only singular structures which are
responsible for the physical process. A mathematical model displaying the dynamics
of one-dimensional shocks, the so-called Burgers equation, exhibits behaviour close
to this situation, where only shocks at isolated points are responsible for the energy
dissipation and all statistical moments are determined by the discontinuities across
the shocks (She, Aurell, & Frisch 1992).

The empirical study of experimental turbulence reveals that in realistic turbulent
systems, 0 < β < 1, namely the most intense fluctuations do not completely dominate,
nor are the fluctuation structures of various intensities completely alike. The
fluctuation structures of various intensities are all responsible for the physical process,
but they are related by the hierarchical similarity law (equation (2.7)) that we believe
is a form of self-organization in the system. In particular, if the velocity structure
function δv� is replaced by the dissipation ε� at the scale �, β measures the degree of
the efficiency of energy transfer from scale to scale.

In a study applying the HS analysis to ordered spiral patterns and disordered spatio-
temporal chaos, Liu et al. (2004) has shown that the parameter β gives a quantitative
description of the degree of order/disorder and of homogeneity/heterogeneity of two-
dimensional fields. For β close to one, the system appears to be orderly homogeneous
with uniformly distributed structures; at smaller β the system contains a mixture
of order/disorder and appears to be heterogeneous with the development of the
overwhelmingly disordered and intermittent spatiotemporal state. In addition, it was
discovered that the measured HS parameter β acts as an order parameter that can give
a quantitative description of the transition from order state (spiral wave) to disorder
state (spiral turbulence), and from one kind of spiral turbulence state to another.
These findings further motivate the present study of the hierarchical structures in
fully developed turbulent flows and detailed examination of the nature of β .

While the parameter β indicates a global property of self-organization of the
system, the parameter γ measures how singular the most intermittent structure is. By
definition, F∞(�) ∼ �γ , hence it is a property of very high-order moments p → ∞. The
smaller γ is, the more singular the most intermittent structure appears. Although γ

is, theoretically speaking, a property of very high-order moments, we find in analysis
of experiments that on a modest range of p (3 � p � 6 ) we can define the most
intermittent structures. This is because the structures that contribute to Fp(�) for
3 � p � 6 comprise most of the intensive fluctuations that are statistically significant.
The term γ is characteristic of those structures in the finite (but long) velocity record.

The most intermittent structure may be high-intensity vortices or other localized
flow structures such as strong streamwise and spanwise vortices in the present free
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Figure 1. Sketch of the experimental set-up. Note the presence of several impediments for
the generation of spanwise disturbances.

shear flow. Hence, γ may be a measure sensitive to the local turbulent environment
in question. Previous study of the hierarchical structures in the Couette–Taylor flow
(She et al. 2001) has shown that β is independent of the Reynolds number, whereas
γ shows a transition corresponding to the breaking down of the Taylor vortex. It
was thus hoped that the HS analysis would shed light on the properties of the
shear flow and other inhomogeneous turbulence fields displaying temporal, spatial or
spatiotemporal coherent structures.

3. Experimental set-up
Our experiments were conducted in the low-turbulence wind tunnel in the State Key

Laboratory for Turbulence and Complex Systems (LTCS) at the Peking University,
with a test section of 0.8 m high, 0.3 m wide and 3.2 m long. The wind tunnel can
generate a uniform flow with a maximum air speed of 23 m s−1 and a residual
turbulence level of 0.085 %. A flat split plate of 0.300 m wide, 1.558 m long and
17 mm thick was inserted into the test section (figure 1). The streamwise, the vertical
and the spanwise directions are denoted by x, y and z, respectively.

The flat plate separated the incoming flow into two layers, and the flow below the
plate passed through a filter that reduced its speed and formed a mixing layer at the
end of the plate. A leading-edge flap was applied to avoid leading-edge separation
(see figure 1). A trip wire was placed upstream as an artificial transition device. In
addition, a spanwise row of impediments was installed close to the trailing edge of the
split plate to enhance lateral velocity fluctuations when needed. The impediments was
essentially a set of small vortex generators that were arranged to produce counter-
rotating streamwise vortex pairs (see figure 1).

Two sets of experiments were carried out with and without impediments, which
will be referred to as exp. I and exp. II, respectively. During both experiments,
the incoming velocity was about 9–11 m s−1. Before taking long time series data for
the HS scaling analysis, the mean velocity, turbulence energy and Reynolds stress
distributions were measured as a background check. A set of mean velocity profiles
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Figure 2. The mean velocity profiles measured at the centre of the channel (z = 0) and
at several downstream positions in exp. II (with impediments). Note that the long series of
velocity data analysed in this paper are obtained at y = 0.

in the mixing layer region with impediments are shown in figure 2. The long time
series data are later collected at y = 0 at several downstream locations (400 mm and
700 mm). Persistent mean shear is present at these locations, as seen from figure 2.

Cross-wire probes were applied for simultaneous measurements of u, v or u, w

velocity components in the mixing region to obtain long time series of velocity
signals for conducting statistical analysis. Each measurement contains about 7.2×107

samples (40 min recording with a sampling frequency of 48 kHz). The measurements
were made simultaneously at two spanwise locations. Both cross-wire probes were
placed on the y = 0 plane, parallel to each other, where one of them (referred to as
probe c1) was fixed at the centre and the other (referred to as probe b2) recorded data
at locations with a series of spanwise spacings Z relative to its partner. To analyse the
streamwise velocity structure functions, the Taylor frozen hypothesis was employed
to convert the temporal fluctuations to streamwise fluctuations in the x-direction.
Then, in addition to the spatial variation in z and with three velocity components, we
constructed two longitudinal and four transverse velocity increment statistics. This
gave us a rich set of data for the study of the fluctuation structures in the free shear
turbulence.

In the present work, we have analysed three groups of experimental data, which
are (a) 40p, obtained at 400 mm downstream without applying the impediments; (b)
40e, with impediments at 400 mm; and (c) 70 e, with impediments at 700 mm. The
basic flow parameters in these modest-Reynolds-number free-shear-flow experiments
is given in table 1. The term ε was determined from the relation ε = 15(ν/U 2)〈(∂tu)2〉
where u (or v, or w) is the r.m.s. velocity fluctuation and U is the mean streamwise
velocity. Other quantities (�0, λ, η, Rλ and R0) were evaluated accordingly. Note that
all length scales in table 1 are derived from the Taylor hypothesis, so they only
describe properties of fluctuation structures in the streamwise direction. Inspection of
these parameters indicates that our free shear flow and moderate-Reynolds-number
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Flow parameters 40p 40e 70e

U (m s−1) 10.28 9.92 9.78
〈u2〉 (m2 s−2) 1.29 1.31 0.71
〈v2〉 (m2 s−2) 0.56 0.67 0.40
〈w2〉 (m2 s−2) 0.62 0.74 0.50
〈u2〉1/2/〈U〉 (%) 11.06 11.53 8.60
εu = 15(ν/U 2)〈(∂tu)2〉 (m2 s−3) 26.25 32.63 38.80
εv = 15(ν/U 2)〈(∂tv)2〉 (m2 s−3) 33.25 42.83 23.54
εw = 15(ν/U 2)〈(∂tw)2〉 (m2 s−3) 32.19 42.01 25.61
�u

0 = 〈u2〉3/2/εu (mm) 56.1 46.2 15.3
�v

0 = 〈v2〉3/2/εv (mm) 12.5 13.1 10.9
�w

0 = 〈w2〉3/2/εw (mm) 15.2 15.3 13.9
λu = [U 2〈u2〉/〈(∂tu)2〉]1/2 (mm) 3.43 3.09 2.08
λv = [U 2〈v2〉/〈(∂tv)2〉]1/2 (mm) 1.99 1.94 2.02
λw = [U 2〈w2〉/〈(∂tw)2〉]1/2 (mm) 2.14 2.05 2.16
ηu = (ν3/εu)1/4 (mm) 0.11 0.11 0.10
ηv = (ν3/εv)1/4 (mm) 0.11 0.10 0.11
ηw = (ν3/εw)1/4 (mm) 0.11 0.10 0.11
Ru

λ = 〈u2〉1/2λu/ν 245 223 110
Rv

λ = 〈v2〉1/2λv/ν 94 101 80
Rw

λ = 〈w2〉1/2λw/ν 106 112 96
Ru

0 = 〈u2〉1/2�u
0/ν 4026 3342 813

Rv
0 = 〈v2〉1/2�v

0/ν 590 678 434
Rw

0 = 〈w2〉1/2�w
0 /ν 756 834 619

Table 1. Flow parameters estimated based on streamwise velocity fluctuation signals for the
free shear flows studied in the experiments. Taylor’s hypothesis is employed. The kinematic
viscosity is ν = 1.5 × 10−5 m2 s−1.

turbulence are properly generated. The Kolmogorov dissipation length scale η is quite
constant (η ≈ 0.11) for all three velocity components in all three flow conditions; the
difference of their Reynolds numbers is due to the difference in the integral length
scales used for calculations below.

From figure 2 and table 1, it is clear that we have generated a set of free
shear flows with rich turbulent fluctuations, which are different from a standard
mixing layer. Because of the presence of upstream turbulence-generation mechanisms,
the turbulence intensity and the Reynolds numbers depend on streamwise and
spanwise positions, hence strong spanwise and streamwise vortices actively evolve
in the downstream direction. We stress that the purpose of the present work is to
study scaling behaviour of turbulence in a free shear flow for establishing possible
correlation between the relative scaling and turbulent flow structures. This is difficult
and requires more experimental work. We believe that the assumption about the
universal nature of intermittency effects is not correct and the deviations of the
scaling parameters reflect the varying properties of the intense fluctuation structures.
We are convinced that the present experimental set-up, although simpler than the
traditional high-standard mixing-layer generator, is appropriate for the investigation
of the influence of various intermittent structures (with the presence of impediments)
on the abnormal scaling. Note that the choice of high sampling frequency (48 kHz) is
also essential in the present study in order to resolve the small scales.

The mean velocity profiles of U in figure 2 allow us to estimate the mean shear
rate and the shear length scale. One estimate of the shear length scale is by
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(U1 − U2)/(dU/dy), which gives a scale of approximately 30 to 70 mm; another

estimate is
√

ε/S3 where ε is the mean dissipation rate and S is the local shear
rate. Using flow parameters in table 1, the latter estimate gives a shear length scale
between 5 and 10 mm depending on the location of the measurement, and it is more
relevant to the fluctuation scales, and hence should be used to compare to the scales
of the scaling range discussed below. Since the shear scales are between �0 and η, the
analysis of the relative scaling conducted below reveals the anisotropic effects of flow
structures due to the shear, hence the present correlation study between the scaling
and flow structure is meaningful.

4. Results
The present study is devoted to the analysis of the velocity fluctuation structures

in free shear flow turbulence. We will examine PDFs of velocity increments, spectra,
and scaling properties of both longitudinal and transverse velocity increments of all
three components. We report the major results in the following section.

4.1. Qualitative behaviour: signals and probability density functions

First, we attempt to give a global view about the fluctuation structures in the free
shear flow. Figure 3 shows typical velocity signals measured in the three conditions
40p, 40e and 70e. It can be seen that the fluctuations of v and w components are less
developed than the u component, especially in the case of 70e, which is consistent
with the values of 〈u2〉, 〈v2〉 and 〈w2〉 reported in table 1. The component u contains
notably larger-scale structures than v and w, which is also consistent with larger �0

reported in table 1. These signals describe only streamwise fluctuation structures, so
there is no visible difference between the fluctuations with or without impediment
(comparing 40p with 40e). However, the decay of fluctuation structures can still be
visible comparing 40e with 70e. In the past, turbulent velocity signals reported in
the literature tend to reveal the random nature of the fluctuations; we would like
to emphasize its complex nature and attempt to associate them with varying scaling
measurement.

Energy spectra reported in figure 4 give a quick view of the distribution of energy
at different scales (in the streamwise direction under Taylor’s hypothesis) for different
velocity components. Both probes show consistent energy distributions across scales,
and the component u displays much stronger motion at large scales than v or w,
but have similar energy distribution at small scales. Compensated energy spectra are
also shown in figure 4 indicating the existence of a short inertial range (Rλ = 237,
see table 1). Inspection shows that unlike u, the vertical and spanwise velocity v

and w have an energy spectrum with a slope less than −5/3. It is seen from the
spectra in figure 4 that all three velocity components have a moderate scaling range
(0.03η < k < 0.2η). Note that we have used a different dissipation length scale (see
table 1) for different spectra. In anisotropic turbulence at finite Reynolds number, the
small-scale eddies are unlikely to be isotropic, especially in a strong shear layer where
there are strong interactions between coherent and random structures (Melander &
Hussain 1993). Hence, a unique Kolmogorov dissipation length scale is not adequate
in anisotropic turbulence. We believe that each fluctuation spectrum should define
its own characteristic length scale using the total dissipation rate calculated from
the integral of k2E(k). Observe that the three spectra do not collapse even at large
wavenumbers, which is evidence of the anisotropy at small scales; a similar result was
observed by Zhou, Heine & Wygnanski (1996).
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Figure 3. Typical velocity signals recorded under three flow conditions of the experiment.
(a) 40p; (b) 40e; (c) 70e. The velocity signals are a kind of one-dimensional ‘visualization’ of
flow structures, which contain such information as typical large-scale fluctuation patterns, the
frequency of abrupt bursting events, etc. They are pertinent to the scaling analysis in this work
which aims at revealing correlation structures across scales.

Saddoughi & Veeravalli (1994) have conducted measurements of longitudinal
and transverse velocity fluctuations in a high-Reynolds-number boundary-layer
experiment (Rλ ∼ 1450), and found a significant difference between the scaling ranges
for the two types of fluctuation. In particular, they found that the v spectrum is
slightly flatter than the u spectrum, or the transverse velocity structure function has
a smaller scaling exponent than the longitudinal one. Sreenivasan (1996) provides a
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Figure 4. The typical energy spectra of longitudinal velocity u (solid line), vertical velocity
v (dashed line) and transverse velocity w (dotted line) measured by the central probe under
three flow conditions: (a) 40p, (b) 40e (c) 70e. Compensated spectra E(k)(kη)5/3 for the same
data are shown in insets.
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z, at two different scales � in units of the Kolmogorov length scale η ≡ 0.11. Solid lines
correspond to δxu and δzu; dashed lines to δxv and δzv; dotted lines to δxw and δzw.

compilation of different flows and shows also that the v spectrum tends to be flatter
than the u spectrum at moderate Reynolds numbers, and approaches to a Kolmogorov
spectrum at very high Reynolds numbers (Rλ ∼ 3000). Mydlarski & Warhaft (1996)
also found in decaying grid turbulence that the v spectrum approximates more slowly
with increasing Rλ to the −5/3 exponent than does the u spectrum. It is not yet
fully understood why the longitudinal velocity component possesses a Kolmogorov
spectrum at far lower Reynolds numbers than transverse components (see discussions
in Sreenivasan 1996), but these results are consistent with our results reported above.
In our case, v and w have less developed large-scale motions and smaller Rλ, which
contributes also to flatter energy spectra.

A quick glance at probability density functions (PDFs) of various velocity
increments gives insight into the development of fluctuation structures, especially
of high intensities. A few typical PDFs of the six velocity increments at two different
scales are displayed in figure 5. The transverse velocity increment PDFs have been
calculated from two simultaneous measurements at two separate spanwise locations;
the falling tails of these PDFs prove that the calculation is reasonably accurate.
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Figure 6. The third-order velocity structure function S3(�) in (a) the streamwise (x) direction
and (b) the spanwise (z) direction as functions of the length scale �/η with the data sets 70e.
The solid line is ∼ �.

4.2. Scaling exponents

In the past, the studies of anomalous scaling in turbulence have been mostly focused
on longitudinal structure functions because they are associated with energy transfer
and because they are easy to measure in experiments. More recent studies have
been focused on both transverse and longitudinal velocity structure functions. There
is considerable experimental evidence (Camussi & Benzi 1997; Dhruva, Tsuji &
Sreenivasan 1997; Shen & Warhaft 2002) and numerical evidence (Boratav & Pelz
1997; Chen et al. 1997; Toschi et al. 1999; Chen et al. 2003) that the longitudinal
scaling exponents are not equal to the transverse scaling exponents, especially in the
turbulence at moderate Reynolds numbers. As the order p increases, especially when
p > 3, the transverse scaling exponents are significantly smaller than the longitudinal
ones. This observation introduces additional complexity in the phenomenology of
small-scale turbulence, and is a challenge to the scaling theory.

In laboratory flows with shear, there is no established relation between scaling
exponents of various transverse and longitudinal structure functions. The principal
objectives of this work are to examine the scaling behaviours of these structure
functions, and to derive as much information about the underlying flow structures as
possible.

In figure 6, we plot the third-order longitudinal and transverse velocity structure
functions S3(�) for various length scales in both streamwise and spanwise directions,
in order to locate relevant physical scales for an inertial range. Because of the limited
Reynolds number (Rλ = 237), only the u component displays a narrow linear range in
the log–log plot for both x and z variations, implying an established constant energy
flux in the streamwise velocity fluctuations. The other two velocity components have
more complex interactions, giving rise to smaller amplitude and smaller rate of
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and transverse (open symbols) velocity structure function of u, v and w, respectively, under
three flow conditions (a) 40p, (b) 40e (c) 70e. The lines are arbitrarily shifted for clarity.

change in � of the third-order velocity structure function, which is the evidence of
more singular structures (see below).

Hereinafter, we turn to discussions of ESS scaling property for longitudinal and
transverse structure functions. The ESS plots (e.g. pth-order moments versus the
third-order moment) are shown in figure 7 for all three sets of data, which allows
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a comparison between them. Clearly, the ESS property is observed for both the
longitudinal and transverse velocity increments of all three components of the velocity
fields in all experimental data sets. These plots define an ESS scaling range for
structure functions up to moment p = 8 for x-increments and to moment p = 6 for
z-increments. Close inspection shows that the ESS property is valid in a narrower
range 55η � � � 236η for z-increments, but in a wider rang 59η � � � 627η

for x-increments. These ranges are consistent with the physical dimension of our
experiment. Since η ≈ 0.1 mm, the wavelength of the impediment is about 25 mm
which is very close to the upper limit for the spanwise scaling range (236η). On the
other hand, the upper limit of the streamwise scaling range is determined by the
scale of the spanwise vortices which is the order of the mixing-layer thickness, around
80 mm in this experiment (compared to 627η).

Note that the shear scales estimated in the previous section (around 5–10 mm)
are near the bottom of our scaling range, therefore the anisotropic effects of flow
structures in the relative scaling are significant. This shows that the present analysis
about the dependence of scaling parameters are meaningful for characterizing flow
structures in the free shear flow.

The relative scaling exponents obtained by a least-squares fit of the ESS plots are
given in table 3 and plotted in figure 8 together with the HS model and K41 models,
where the two longitudinal scaling (ζ u,x

p , ζw,z
p ) and the four transverse scaling (ζ u,z

p ,
ζ v,x
p , ζ v,z

p , ζw,x
p ) exponents are all included. The consistency check of all three relative

scaling exponents in x-increments are carried out with independent data sets of the
simultaneous measurement by the two cross-wire probes (c1 and b2) and at different
Z-locations. They show small fluctuations within a few per cent.

A comparison of our results in a free shear flow with previous measurements
is important to establish the credibility of the present measurement. Chosen for
comparison are several measurements including a simulated Navier–Stokes isotropic
turbulence by Chen et al. (1997), a homogeneous shear turbulence measurement by
Shen & Warhaft (2002), a cylinder wake flow result by Bi & Wei (2003), and a
high-resolution (up to N = 10243) numerical turbulence by Gotoh, Fukayama &
Nakano (2002). Table 2 summarizes the results of both ζ u,x

p and ζ u,z
p in the five

measurements (except in Shen & Warhaft 2002, ζ u,y
p is reported instead of ζ u,z

p and
a conversion to ESS exponents is made here). Our results are consistent with the
results of Chen et al. (1997), Shen & Warhaft (2002) and Bi & Wei (2003) for
both sets of scaling exponents. This is anticipated since the mixing layer is nearly
homogeneous in the x and z directions, and the streamwise velocity u has more
maturely developed turbulent structures. This validation of our results is encouraging
and also confirms that the streamwise velocity fluctuations in sheared and unsheared
turbulence have similar longitudinal and transverse relative scaling properties to
homogeneous turbulence, which has been reported earlier by Ruiz-Chavarria et al.
(2000) in a turbulent boundary layer. The transverse scaling exponents ζ u,z

p are
consistent among the first four sets of experiments, but are smaller than the latest
simulation results of Gotoh, Fukayama & Nakano (2002). One possible explanation
is relative small Reynolds numbers in the former cases, but this must be confirmed
by further studies. Our results generally confirm the previous observation that
transverse scaling deviates more from normal scaling than longitudinal scaling. The
nature of their different degree of intermittency will be discussed later by the HS
analysis.

We now analyse other sets of scaling. Figure 8 shows that the six sets of scaling
exponents can be split roughly into three groups: (I) ζ u,x

p , ζw,x
p and ζw,z

p ; (II) ζ u,z
p and
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ζ v,x
p ; (III) ζ v,z

p . We attempt to itemize our observations and discussions according to
three groups as follows:

(a) The first group (I) includes two sets of longitudinal scaling (ζ u,x
p , ζw,z

p ), one
obtained with the Taylor’s hypothesis and the other through direct simultaneous
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Present Bi Chen Shen Gotoh

Rλ = 237 Rλ = 500 Rλ = 216 Rλ = 254 Rλ = 381

Order p ζu,x
p ζ u,z

p ζ u,x
p ζ u,z

p ζ u,x
p ζ u,z

p ζ u,x
p ζ u,y

p ζ u,x
p ζ u,z

p

1 0.36 0.39 0.37 0.37 0.38 0.37 0.36 0.38 0.370 ± 0.004 0.369 ± 0.004
2 0.70 0.72 0.69 0.69 0.70 0.70 0.69 0.72 0.709 ± 0.009 0.701 ± 0.01
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 ± 0.02 0.998 ± 0.02
4 1.28 1.24 1.28 1.23 1.27 1.23 1.28 1.24 1.30 ± 0.02 1.26 ± 0.03
5 1.54 1.44 1.54 1.44 1.51 1.44 1.54 1.43 1.56 ± 0.03 1.49 ± 0.04
6 1.78 1.61 1.77 1.63 1.75 1.62 1.77 1.58 1.79 ± 0.04 1.69 ± 0.05
7 2.00 1.75 1.97 1.78 1.95 1.75 1.98 1.71 1.99 ± 0.04 1.86 ± 0.05
8 2.21 1.86 2.17 1.89 2.14 1.85 2.16 1.82 2.18 ± 0.04 2.00 ± 0.04

Table 2. The comparison of the ESS scaling exponents obtained in the present experiment
(40p) and several results obtained preciously by Bi & Wei (2003), Chen et al. (1997),
Shen & Warhaft (2002), Gotoh, Fukayama & Nakano (2002), for both the longitudinal
structure function (ζ u,x

p ) and transverse structure function (ζ u,z
p ). Data sets in the present study

are extracted from figure 8.

measurement. They are very close to the results of homogeneous and isotropic
turbulence given by the log-Poisson model of She & Lévêque (1994). As discussed
above, both streamwise and spanwise turbulent fluctuations are close to being
homogeneous. The first group also includes a transverse scaling ζw,x

p which deviates
remarkably form other transverse exponents in group (II). In the present free shear
flow, ζw,x

p is very close to the value predicted by SL94. Careful examination of the
exponent values in table 3 shows that the three exponent values are closely equal
at low orders, but ζw,x

p has slightly larger values than the other two longitudinal
exponents at p > 6. Note that ζw,x

p is related to ωy . On the other hand, ζ u,z
p is also

related to ωy , but shows significantly smaller scaling exponents. This is a sign of
strong anisotropy, and deserves further study.

(b) The group (II) exponents include ζ u,z
p and ζ v,x

p which have exponent values
consistent with the transverse scaling exponents in homogeneous turbulence, which
are known to have systematically smaller values than the longitudinal ones. By an
extension of the argument of Chen et al. (1997), ζ u,z

p is related to ωy and ζ v,x
p to ωz.

Then, the above result implies that the spanwise and vertical vortex structures may
have a similar intermittency property. This is possible if the vortical structures on
the perpendicular plane have random orientation. Note that in a mixing layer, ωz is
the primary component of vortices. A closer inspection shows that ζ v,x

p is slightly
more intermittent than ζ u,z

p , suggesting that the primary spanwise vortices are slightly
more singular.

(c) The group (III) includes only ζ v,z
p that show the largest deviation from the

normal scaling and the strongest intermittency effects. By the same argument, ζ v,z
p is

related to streamwise vortices ωx . Thus, the result shows that the streamwise vortices
are much more intermittent than the two other vorticity components. We believe
that this is plausible, and a similar situation occurs in the boundary flow with the
formation of the streaks near the boundary.

Among three different flow conditions, the scaling exponents of the two longitudinal
components (ζ u,x

p and ζw,z
p ) vary little. The transverse component δxw has slightly more

intermittent scaling when the impediment is introduced, indicating that the upstream
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ζp\Order p 1 2 3 4 5 6 7 8

SL94 0.36 0.70 1.00 1.28 1.54 1.78 2.00 2.21
K41 0.33 0.67 1.00 1.33 1.67 2.00 2.33 2.67

40p
ζu,x
p 0.36 0.70 1.00 1.28 1.54 1.78 2.00 2.21

ζ u,z
p 0.39 0.72 1.00 1.24 1.44 1.61 1.75 1.86

ζ v,x
p 0.39 0.72 1.00 1.23 1.43 1.58 1.71 1.80

ζ v,z
p 0.44 0.76 1.00 1.15 1.24 1.25 – –

ζw,x
p 0.37 0.70 1.00 1.28 1.54 1.77 1.99 2.20

ζw,z
p 0.36 0.69 1.00 1.29 1.55 1.80 2.03 2.24

40e
ζ u,x
p 0.37 0.70 1.00 1.28 1.53 1.76 1.98 2.18

ζ v,x
p 0.39 0.72 1.00 1.23 1.42 1.58 1.70 1.79

ζw,x
p 0.37 0.70 1.00 1.27 1.51 1.72 1.91 2.08

70e
ζ u,x
p 0.36 0.70 1.00 1.28 1.54 1.78 2.00 2.21

ζ u,z
p 0.39 0.72 1.00 1.24 1.43 1.60 1.74 1.85

ζ v,x
p 0.39 0.72 1.00 1.23 1.42 1.57 1.69 1.78

ζ v,z
p 0.41 0.74 1.00 1.19 1.32 1.40 – –

ζw,x
p 0.37 0.70 1.00 1.27 1.51 1.73 1.93 2.11

ζw,z
p 0.36 0.69 1.00 1.28 1.54 1.78 2.01 2.21

Table 3. The ESS scaling exponents for the two longitudinal structure functions, (ζ u,x
p , ζw,z

p )
and four transverse structure functions (ζ u,z

p , ζ v,x
p , ζ v,z

p , ζw,x
p ) under three flow conditions.

Corresponding scaling exponents from K41 and SL94 models are also given for comparison.

perturbation by the impediment introduces additional intermittency to the spanwise
component. Indeed, the introduction of the impediment breaks the scaling for several
components at 40e, which are restored further downstream at 70e. Comparing 40p

and 70e, some variation of the scaling exponents of the other transverse components
may be recorded, but are not very significant. The HS analysis below is more effective
in describing their difference.

In summary, we find that the two sets of longitudinal scaling are close to
homogeneous scaling and to SL94 and the transverse scaling exponents are generally
smaller than the longitudinal ones when p > 3 with the exception of ζw,x

p which are
significantly less anomalous than other transverse ones. The nature of this is yet to be
studied. The set of transverse scaling related to the streamwise vorticity component
seems to be much more singular than any of the other components.

These findings show that in real anisotropic turbulence, the splitting into two groups
of longitudinal and transverse velocity structure functions is not sufficient to describe
the scaling property. The information of anisotropic flow structure is very important
to the scaling property. Vice versa, both longitudinal and transverse scaling properties
of all velocity components are required to provide a complete picture of anisotropic
flow structures in the flow.

4.3. β-test and γ -test

In the previous section, we report the results of six sets of scaling, which show
various degrees of deviation from the normal scaling. In this subsection, we apply
the HS analysis to the data (velocity structure functions and scaling) to achieve a
more synthesized description of the various components. The HS analysis consists
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of the β-test and γ -test; the former verifies the existence of hierarchical similarity
and measures the HS parameter β and the latter measures the degree of singularity
of the most intense fluctuation structures. The objective is to construct a coherent
description of the whole set of scaling in terms of two fundamental parameters related
to the property of the hierarchy and of the most intense flow structures.

First, we report the results of the β-test and γ -test. The β-test consists in choosing
a range of scales to calculate (2.8) using the sets of computed values of velocity
structure function up to an order p0. In the β-test, the range of scale is generally
chosen to be the same as the ESS scaling range. In order to ensure the convergence,
we choose to calculate the velocity structure functions p � p0 = 6. The results are
shown in figure 9 for all six sets of data and at all three physical conditions. It is
clear that the β-test is satisfactorily passed in all cases. Once again, it is demonstrated
that the hierarchical similarity is well-satisfied in turbulent fluctuations in a variety
of physical conditions and for a variety of longitudinal and transverse fluctuation
structures.

With one exception (βw,z) (for which the determination of β is more uncertain
because of a limited range of variation in hierarchical function, see figure 9a), the
calculated HS parameter β seems to be universal in all cases, for either longitudinal
or transverse velocity structure functions and either with or without impediment
generating upstream spanwise variations. This is remarkable as it indicates that the
parameter β is related to a global organizational property of the hierarchy and is
not responsible for the different scaling observed in the free shear flow. This finding
is in contrast with Boratav (1997) and Grossmann, Lohse & Reeh (1997) who claim
that β must be different for longitudinal and transverse scaling (specifically βL > βT )
for describing different scaling in numerical homogeneous turbulence at moderate
Reynolds numbers. Our finding indicates that a larger deviation from the normal
scaling does not necessarily imply a more heterogeneous hierarchy of fluctuation
structures. We believe that the other parameter γ characterizing the most intense
structures has more responsibility for the difference. The exact nature of the difference
between the present result and two previous studies of numerical simulations (Boratav
1997; Grossmann, Lohse & Reeh 1997) is not yet known. Perhaps the β-test has to
be done with caution; we have carefully chosen the range of � and p � 6 for the
calculation of β , which has been found important for obtaining a consistent estimate
of β for all situations. Note that the measured β here are very close to the SL94
prediction for homogeneous isotropic turbulence: βSL = (2/3)1/3 = 0.874.

Our finding is consistent with Camussi & Benzi (1997) and Casciola et al. (2001)
who reported an observation of universal self-scaling τp,q of the energy dissipation
fluctuations, where 〈εp

� 〉 ∼ 〈εq
� 〉τp,q . In the framework of the HS model, τp,q can be

shown to depend only on β . Therefore, the universality of β implies the universality
of the self-scaling of the dissipation fluctuation. We have independently calculated
the GESS scaling exponents for all six velocity structure function components and
for all three data sets, and have obtained consistent results (not shown here). Within
1% to 3% of statistical uncertainty, we consider that the universality of β is verified.

The universality of β may have a fundamental cause. As we discussed above, β

describes the similarity between the fluctuation structures of increasing intensity, i.e.
pth and (p + 1)th HS function. Liu et al. (2003, 2004) have shown that a smaller β

is typically associated with a field having heterogeneous compositions of a multiple
nature, for which lower-intensity fluctuation structures have different properties from
higher-intensity fluctuation structures. The BZ experiment at different reaction rates
displays a variation of β which is associated with various phase transitions. Thus,
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Figure 9. Results of the β-test of longitudinal (filled symbols) and transverse (open symbols)
velocity increments of u, v and w at order p = 6 at three flow conditions: (a) 40p, (b) 40e,
(c) 70e. For clarity, data points are shifted vertically by a suitable amount.

β is a parameter describing global organizational order of the system. In the free
shear flow, although flow structures are turbulent and anisotropic, their organizational
order seems to be the same for different components, and no drastic difference exists
among various components. The result reported above is generally consistent with
this picture. On the other hand, we observe a slight difference of β between the present
free shear flow and the Couette–Taylor flow studied earlier (She et al. 2001). A smaller
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β in the Couette–Taylor flow is, in our opinion, due to the presence of the coherent
Taylor vortices that dominate the very intense fluctuations and have very distinct
character from the cascade-generated low-amplitude fluctuations. In other words, the
Couette–Taylor flow appears to be more heterogeneous than the free shear flow in
which turbulence is generated by an upstream thread. This speculative explanation is
worth testing in the future.

Note that an exceptional case is βw,z describing the longitudinal scaling of the
spanwise velocity (w) along the spanwise direction (z). This quantity is obtained
by analysing the difference of the two signals from simultaneous measurements by
the two cross-wire probes. At present, we cannot entirely rule out the possibility of
experimental errors in calculating the velocity increments of w. This is because w is
a small quantity derived from two wires of the cross-wire probe and the increment is
obtained by a further substraction between two probes at different z locations.

We have not attempted to quantify the errors in the β-test because our primary
goal is to study the difference in scaling exponents (and hence in β) among different
velocity components and among different flow conditions, for exploring mechanistic
explanation in terms of flow structures. The differences are relative and the judgement
of the constancy in β (and the variation below in γ ) is best made on the visual
inspection of the log–log plot of the β-test (see figures 9 and 10).

The γ -test consists of applying (2.10) using the value of β derived from the β-
test and the measured scaling exponent ζp . Note that smaller γ implies a slower
rate of change in high-order moments as the third-order moment varies (when the
relative scaling is concerned). Since the third-order moment decreases quickly as the
length scale approaches the viscous cutoff, a small γ reveals that the most intense
fluctuations penetrate further into the dissipation range scales. For example, γ is
zero for shocks in the Burgers equation, and the Burgers shocks have a width much
smaller than a typical Kolmogorov estimate of the viscous cutoff scale. Hence, we
believe this is the meaning of more singular intense structures that are characteristic
of the flow environment (e.g. shocks for the Burgers equation). The γ -test focuses
on the description of such characteristic structures. The HS analysis of the Couette–
Taylor flow by She et al. (2001) shows that the variation of γ is indeed related to the
breakdown of the Taylor vortex as the Reynolds number increases above 105.

Results of the γ -test are shown in figure 10. Here, we can classify all values of γ of
various components into four groups. The first group comprises γ u,x , γ w,z and γ w,x

which have similarly largest values of γ or the weakest small-scale structures. With
impediment (data 40e and 70e), γ w,z becomes too subtle to determine. This group
corresponds to the first set of scaling with exponents close to the SL94 prediction.
The values of γ (∼ 0.05) are, however, a little smaller than in the longitudinal
variations in homogeneous isotropic turbulence (γ ∼ 0.1), indicating that the most
intense associated fluctuations are a little more singular than in the isotropic situation.
The fact that the transverse component γ w,x is in the same group as the other two
longitudinal components is not entire understood, as we have discussed above. The
second group includes γ u,z which seems to vary the most strongly with the presence
of an impediment. The scaling exponents ζ u,z

p of the three data sets have not shown
a remarkable difference, but the β-test shows that with impediment βu,z is a little
smaller, implying more heterogeneous structures in the spanwise fluctuations of u,
which is very reasonable since the perturbation introduced by the impediment is in the
z-direction. Note that γ u,z at 40e has a significantly larger values (∼ 0.05) than at 40p
(∼ − 0.05) and 70e (∼ − 0.01), indicating that the fluctuation structures introduced
by the perturbation of the impediment seem to have a weak singularity, which later
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Figure 10. Results of the γ -test of the same data set as in figure 9.

evolves to more singular structures at 70e. In the present data, this component seems
to carry a rich set of fluid mechanical information. The third group includes γ v,x ,
which is another transverse component but has a less sensitive dependence on the
perturbation by the impediment. The component has a very strong singularity and
is related to ωz which is the main rolling spanwise structure of a mixing layer. Our
analysis seems to indicate that this component develops also very intense small-scale
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Parameter 40p 40e 70e

βu,x 0.87 0.88 0.90
βu,z 0.87 0.85 0.85
βv,x 0.88 0.88 0.87
βv,z 0.87 0.87 0.88
βw,x 0.88 0.87 0.88
βw,z 0.91 0.97 0.95
γ u,x 0.08 0.06 0.04
γ u,z −0.05 0.05 −0.01
γ v,x −0.16 −0.14 −0.13
γ v,z −0.45 −0.29 −0.21
γ w,x 0.11 0.06 0.04
γ w,z 0.05 – –

Table 4. Measured HS parameter values of β and γ for all situations involving a velocity
component and a direction for incremental calculation. For instance, βu,x is measured from
the increment of the velocity u in the x-direction. Note that the variation of β is much smaller
than γ . Thus, the HS model explains the variation of the ESS scaling through the change of
the most intense fluctuation structures. See the text for detailed comments.

structures. Finally, the most singular structures is represented by γ v,z which is much
smaller than all others, indicating that the associated streamwise vorticity component
(ωx ∼ δzv) is much more singular. In other words, the streamwise vorticity is able to
develop very intense fluctuation structures at very small scales, i.e. the most intense
small-scale fluctuation structures are in the form of streamwise vortices. This is a
distinct feature of the present free shear flow. All the values of HS parameters β and
γ obtained are summarized in table 4.

Note finally that all scaling exponents in figure 8 are accurately described by
the general formula (2.9) with the measured parameters β and γ . This accuracy of
the HS model for all sets of scaling exponents places it as the leading choice of
phenomenological models for quantitative analysis of scaling and for seeking fluid
mechanical interpretation of the scaling exponents.

5. Conclusions
Free shear flow is an important system capable of generating actively evolving

anisotropic turbulent structures. In this work, we have conducted a systematic
study of longitudinal and transverse velocity increment statistics in a free shear
flow with several kinds of upstream perturbation. The goal is to establish a relation
between statistical physics concepts of scaling and fluid mechanical concepts of flow
structure. A detailed investigation of the ESS scaling exponents and an analysis
in the framework of the HS model reveals a possible link between flow structures
and scaling. Unlike previous studies, most of which are qualitative, we focus on
the quantitative understanding of the simultaneous measurements of several velocity
components across multiple directions. Indeed, the free shear flows with and without
the impediment provide a set of data which allows us to study the varying degree
of intermittency of various small-scale anisotropic flow structures. The differentiation
of flow structural properties, when linked with the calculation of scaling, begins
to offer a concrete picture of how various components of flow structures organize
themselves. However, the effort is just beginning and much remains to be done in
applying statistical physics concepts in the description of fluid mechanical properties
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of turbulence. We believe this is a step towards establishing a practical statistical fluid
mechanics of turbulence, if it ever exists.

Building a statistical framework of turbulence requires a phenomenology since a
direct derivation from first principles (e.g. the Navier–Stokes equation) has proved
difficult, if not impossible. The HS model has been shown by previous studies and
by the present work to be a sound phenomenology, since it provides an accurate
description of the whole set of scaling exponents in terms of two parameters, each of
which has a targeted interpretation. Since the model has been applied to the analysis
of scaling properties of a wide range of nonlinear systems, the validity of the model
for the free shear flow is in some sense not a surprise. However, it is a new exploration
of conducting a determination of the parameter β and γ for both longitudinal and
transverse increments of multiple velocity components under several flow conditions.
The present study provides not only a rich set of measurement results of scaling in
a free shear flow, but also offers a detailed interpretation so as to form a coherent
picture of the intermittent multi-scale fluctuation field.

Let us briefly summarize our picture of small-scale structures of the free-shear-flow
turbulence in light of the HS analysis. Before entering the shear layer, a boundary-
layer turbulence is generated by upstream perturbations. This boundary-layer
turbulence already has a small-scale component typical of boundary-layer turbulence
at moderate Reynolds number, which has more intermittent small-scale structures
in transverse directions than in longitudinal directions. The streamwise components
have more large-scale structures than the vertical and spanwise components. After
entering the mixing layer, three remarkable features are observed. First, strongly
intermittent streamwise vortices are generated, which are more intermittent than in
the usual transverse fluctuations of homogeneous turbulence. The strong intermittency
manifests itself in very small γ v,z and also in slow decay of intense fluctuations at
very small scales in spanwise increment statistics, as figure 6 shows. The component is
related to streamwise vortices and the strong intermittency is observed under all three
flow conditions, indicating that the mechanism is stable against upstream spanwise
perturbation of the impediment. Secondly, the spanwise (z) variation of the streamwise
velocity component (u) shows a remarkably sensitive dependence on the perturbation
of the upstream impediment. However, the action of the impediment has led to less
singular structures of u in z, namely exponent γ u,z with the impediment becomes larger
and gradually decreases as the flow goes downstream. This is probably due to the
generation of large-scale variations in z by the impediment, which cannot effectively
generate small-scale intermittent structures in the spanwise direction. Finally, the
spanwise velocity component (w) seems to generate very mild transverse fluctuations
in the streamwise direction (x), which is more like a longitudinal variation than a
transverse one. The exact nature of this observation is still unknown, but it seems to be
also robust against the spanwise perturbation by the impediment. Other components
seem to have similar behaviour to the homogeneous turbulence, so we specially
outline the above three features.

It is remarkable that the HS parameter β is almost universal for fluctuations of
all components under all flow conditions. This result, if confirmed for other flows,
would be significant, since the universality lays a solid ground for the HS model to
be a sound phenomenology for classifying turbulent flow structures. Previous studies
(Liu et al. 2004) indicate that β changes when the system undergoes phase transitions
that lead to structures of heterogeneous hierarchy. In a Newtonian fluid, this would
happen if abnormal fluctuation structures are introduced to a self-organized state of
fluctuations. Thus, a variation of β is a signature of new instability mechanisms or
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a new turbulence production mechanism. In this regard, we would like to stress a
technical point in performing the β analysis, that is, the range of � must be in the
scaling range and the range of p should be moderate. The results of the β-test do
depend on the two ranges for which the velocity structure functions are collected.

On the other hand, we have found that the variation of γ characterizing the
most intermittent structures is mostly responsible for the observed variations in
the ESS scaling for various components under various flow conditions. We provide
evidence that the statistical concept of the most intermittent structures within the HS
phenomenology may be applicable to the description of characteristic flow structures
such as streamwise vortices. A systematic relation between γ and fluid mechanical
properties is still missing, but further studies on the topic would be worth pursuing.

Previous work has shown that the transverse velocity structure functions have
significantly smaller scaling exponents than the longitudinal ones, i.e. ζ T

p < ζL
p . Our

result generally confirms this conclusion. Chen et al. (1997) have introduced a
generalized Kolmogorov refined self-similarity hypothesis (KRSH) to relate the more
intermittent transverse velocity structure functions to the locally averaged enstrophy
fluctuation. We see here that various transverse components may have different
degrees of intermittency when the flow anisotropy is important, hence the KRSH
or the generalized KRSH may not be valid in general for all flows. Even the two
transverse components of the velocity increment that are related to a single vorticity
component (i.e. δxw and δzu related to ωy) may have different scalings. We conclude
that, in general, the intermittency of various components must be studied altogether
for an anisotropic turbulent flow. Recent theoretical framework on SO(3) formalism
may be applied in future studies (Biferale et al. 2002, 2004).
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